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ABSTRACT 

Many flow fields of industrial interest require the accurate simulation of transition to turbulence from an 
initially laminar flow field, however, there exist a huge number of possible numerical methods one can 
employ for a given situation. This paper highlights the computational uncertainty associated with the 
choice of numerical method when simulating a turbulent flow field on under-resolved grids. As a 
motivating example, it is shown that for a swept wing at high Reynolds number Godunov-type methods 
gain very good results in the turbulent regions, but accuracy is limited in the transition region close to the 
leading edge.  Two-dimensional instabilities are investigated to highlight in isolation the importance of 
defining in a physically relevant manner the resolving capability of the numerical scheme employed. An 
educated choice of numerical method can easily save one eighth of the computational expense, and a 
reduction in computational uncertainty associated with under-resolved flow features in both two and three 
dimensions. Furthermore, simulations of a multimode shear instability demonstrate that even two closely 
related discretisation methods can produce significantly different behaviour during the transition regime, 
particularly if the initial perturbations are not well resolved on the given grid with the given numerical 
method.  

1.0 INTRODUCTION 

The development of modern computational fluid dynamics methods encompasses a number of numerical 
components and modelling assumptions which can affect both accuracy and efficiency of incompressible 
and compressible flow simulations. In the simulation of industrial flows it is often necessary to capture 
several different stages in the development of a turbulent flow field. However, the linear, non-linear and 
fully turbulent stages in the growth of an initial perturbation often place contradictory requirements on the 
numerical methods used. For example, in a fully developed turbulent flow it is desirable that the numerical 
method provides some kind of damping to replace the action of subgrid stresses on the resolved motions. 
However, in the early linear and non-linear stages it is important to allow the perturbations to grow 
without excessive damping from the numerical method. Typically at the early stages these perturbations 
are severely under-resolved. This paper demonstrates that the choice of numerical scheme strongly 
influences the solution in time-dependent transitional flows, especially if the user does not consider 
carefully the capability of the numerical method employed. 

The structure of this paper is as follows. Section 2 illustrates the problems associated with transitional 
flows in high-Reynolds number, Large Eddy Simulation (LES) of a swept wing configuration. The LES 
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strategy employed throughout the paper is based on high-resolution and very high-order methods (up to 
ninth-order), which act as an implicit subgrid scale model due to their non-linear dissipative properties; 
this approach is also known as implicit LES (ILES). These simulations show that although the 
computational results are in very good with the experiment in the regions of fully developed turbulent 
flow, including the near-wall flow, discrepancies between experiment and simulation occur at the leading 
edge due to the highly under-resolved grid in this area. These effects are investigated in isolation in 
Section 3, detailing the various mechanisms which influence the early stages of growth of a shear-induced 
instability, and a shock-induced instability. Uncertainties in the computation due to the resolution of the 
numerical scheme (second- to ninth-order), Mach number effects and initialisation of the flow field are 
discussed. Section 4 extends the understanding gained from the single mode simulations to more complex 
simulations of transition to turbulence through a multimode shear instability, and the transition of regular 
vortices to a fully turbulent flow in the Taylor-Green problem. Finally, Section 5 draws conclusions on the 
performance of high-resolution methods. 

2.0 HIGH REYNOLDS FLOW OVER A SWEPT WING 

A motivating example for investigating the behaviour of different numerical methods in transitional flows 
is a simulation of a swept wing at a Reynolds number of approximately 210,000, based on the free-stream 
velocity and root chord length, and a near incompressible Mach number of 0.3. The flow around the swept 
wing geometry has been computed using a third-order accurate MUSCL scheme in space and a third-order 
accurate Runge-Kutta method in time [8]. For the numerical discretisation, a C-O-type grid comprising a 
total of 12.7M points has been employed. It features z+ values ranging from 1 in areas of separated flow to 
5 at the leading edge and the computational domain measures 6c, 6.14c and 5c (c is the root chord length) 
in x, y and z directions, respectively.  
 
The general flow topology is illustrated in Figure 1 by instantaneous streamlines, slices of iso-vorticity 
contours and pressure coefficient distribution on the suction side of the wing. Similar to sharp-edged delta 
wings, the shear-layer emanating from the leading edges rolls up into a distinctive leading edge vortex 
system which breaks down as it progresses towards the trailing edge. After breakdown, a non-symmetrical 
turbulent flow-field develops over the outer section of the wing. 

 
Figure 1: Instantaneous streamlines, slices of iso-vorticity contours and pressure coefficient    

distribution on the suction side of the wing. 
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A quantitative comparison between the simulation, labelled as “CNS3D”, and experimental 3D-LDA 
measurements [22] has been performed for the averaged streamwise velocity component as well as for the 
normal and shear stress components, see Figure 2. Three chord-wise positions (10%, 50% and 90% local 
chord) at a spanwise location of 90% half-span (outboard of vortex breakdown) are presented here and all 
data has been normalised by the free-stream velocity and the root chord length. In the fully separated flow 
region near the wing tip, the velocity profiles from the simulation and the experiment presented in Figures 
2(a) to 2(c) match at all chord-wise positions. Regarding the Reynolds stresses away from the under-
resolved area near the leading edge, the shear stresses compare closely with the experimental data in shape 
and magnitude, see Figures 2(e) and 2(f). However, the differences in Figure 2(d) regarding the magnitude 
of the Reynolds stresses closer to the leading edge hint at the inadequate grid resolution in the regions of 
highly accelerated flow.  
 

 
Figure 2: Comparison between averaged velocity profiles and stresses from experiment and 

results obtained with ILES for different locations along the local chord at 90% half-span. 

Although the mean velocities obtained in the simulation are very accurate, the representation of the 
fluctuating components lacks confidence near the leading edge. Here, prediction of the transitional flow 
instabilities emanating from the separation region is of paramount importance, especially since they are 
almost always highly under-resolved in practical applications. This example shows that numerical 
investigations of fundamental instabilities are not only of academic interest, they also have a great impact 
on most engineering problems, e.g. the prediction of fluid structure interactions leading to flutter and 
fatigue. 
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3.0 GROWTH OF A SINGLE INSTABILITY 

3.1 Shear Instability 
One of the most common instabilities is the shear, or Kelvin-Helmholtz instability [10]. This occurs when 
there is a gradient in flow velocity, such as in boundary layers, or two flows joining behind a flat plate. 
Given a small perturbation in the flow, the mixing layer grows in time. The test case considered in this 
section is a single mode Kelvin-Helmholtz instability. The computational domain is initialised with y-
direction velocities V on the right hand side, and −V on the left hand side of a square domain. An initial 
perturbation of magnitude 0.1V is applied to the interface to seed the single mode instability [21]. The 
development of this instability using a grid of 32× 32 is shown in Figure 3, by tracking a passive scalar 
which is initialised as 1 in the right hand flow, and 0 in the left hand flow.  
 
This section will investigate two commonly known, but often forgotten sources of error. The first is the 
effective resolution of a given numerical scheme. It has become common to measure the effective 
resolution of a numerical scheme via the ‘order of accuracy’, however this measurement does not give a 
direct indication of the resolving power of the numerical method. For example, it is not clear if a second-
order scheme requires ten cells to accurately resolve a vortex, or thirty. Once this criterion is measured, it 
represents the minimum size of eddy which is accurately represented in the full scale simulation (i.e. close 
to the leading edge in the swept wing). It is, of course, a closely related function of the resolution of the 
numerical method chosen.  The second phenomenon investigated is the influence of Mach number on the 
solution gained for a compressible numerical scheme. It is well known that the solution gained using 
compressible (Godunov-type) methods degrades at low Mach [19]. This is illustrated clearly by varying 
the Mach number of the single mode perturbation.  
 
Figure 3 compares the performance of two standard second order methods [18, 17] when resolving the 
growth of the single mode perturbation at Mach=0.2. At 322 resolution the perturbation is clearly well 
resolved and the characteristic Kelvin-Helmholtz roll-up of the vortex is visible. However, reducing the 
grid size to 162 shows that both of the second-order methods fail to reproduce the eddy structure at 322, 
indeed the Minbee-based limiter solution does not produce a vortex at all. Clearly, the second-order 
methods require greater than 16 cells per vortex to resolve the growth accurately. This is not a new result, 
however in modern turbulence simulations it has become commonplace to require that a Kolmogorov 
spectrum is resolved all the way to the cut-off frequency. It is unrealistic to expect a numerical scheme to 
resolve perfectly a vortex in just 2 cells, and an excellent result for very high-order methods would be 
accurate resolution of vortices which span 8 cells. Any kinetic energy in vortices smaller than this is either 
numerical noise, or damped by numerical dissipation.  
 
Figure 4 shows the performance of a fifth-order MUSCL (M5) [11] and ninth-order WENO (W9) [1] 
methods applied to the same single mode problem at 162 cross-section. The results are significantly 
improved upon those for the second-order limiters, and even factoring in the extra computational time (≈ 
20% for M5 and ≈ 350% for W9) they are computationally more effective. Note that at a resolution of 8 × 
8 the very high order methods also fail to capture the development of the vortex. Considering that around 
the leading edge of the swept wing there are approximately 8 cells in the transitional zone it is not 
surprising that the growth of the small perturbations are not captured accurately.  
 
Moving onto the behaviour of Godunov-type methods at low Mach numbers, Figure 5 shows the 
development of the Kelvin-Helmholtz instability at Mach=0.02 with the fifth-order method. As can be 
seen there is a slight perturbation of the shear layer, but further development is prevented due to the 
dissipation of the numerical scheme. It has been shown that the dissipation of kinetic energy in a 
numerical scheme increases as 1/Mach [15]. Thus there is a ten-fold increase in dissipation by moving 
from Mach=0.2 to Mach=0.02. At this Mach number there are two options - either switch to an 
incompressible code (or a non-shock capturing/perturbation model), or implement a correction which 
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gradually central differences the velocity components as Mach tends to zero [16]. Results using this 
method in conjunction with fifth-order MUSCL are also presented in Figure 5 (labelled ‘M5+LM’) 
demonstrating greatly improved resolution of the vortex.  

 
Figure 3: Contours of volume fraction (0.25, 0.5, and 0.75) of the passive scalar for the Kelvin-

Helmholtz instability using two different second-order methods 
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Figure 4: Contours of volume fraction (0.25, 0.5, and 0.75) of the passive scalar for the Kelvin-

Helmholtz instability using very high-order methods 

 
Figure 5: Contours of volume fraction (0.25, 0.5, and 0.75) of the passive scalar for the Kelvin-

Helmholtz instability at three different times at Mach=0.02 
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In summary, care must be taken to define the ‘operating limits’ of the numerical scheme with respect to 
resolution of vortex features and the Mach number of the system of interest, as the common custom of 
labelling numerical schemes by their order of accuracy is not the sole important measure in the 
specification of numerical grids, or choice of numerical methods in practical simulations. 

3.2 Shock-Induced instability 
The Richtmyer-Meshkov Instability (RMI) is caused by a shockwave passing through a perturbed gas 
interface. As such, it requires accurate treatment of shock waves, turbulence and multiple gases. Three-
dimensional multiple mode problems are very challenging problems to simulate or produce in experiment. 
It is useful to look at the two-dimensional single mode case to compare schemes though two-dimensional 
stability still does not guarantee a sensible solution of the three-dimensional problem.  In order to gain 
some validation for the numerical method, a simulation based on the experimental work of Jacobs [9] was 
set up. This experiment used a new approach to create the material interface to remove the effects of 
membranes that had always affected previous experimental work. The interface was a single-mode 
sinusoid between air and SF6, and in the case studied the incident shock was of strength 1.3. 
 

 
Figure 6: Plot of volume fraction of SF6 showing the development of the instability over time, 

using 5th-order WENO on 80x240 grid, based on a sharp initial interface 
 
The simulation was first initialised as perfect - pure gases on either side of the interface with a pre-shock 
Atwood number of 0.692 - whereas due to necessity in creating the perturbation the experiment has some 
diffusion leaving some air mixed with the SF6. The experimental and numerical problems are similar 
enough to bear comparison, not only in the visual appearance of the instability but also the growth rates of 
the bubble and spike, which are appropriately non-dimensionalised.  
 
The typical growth of the instability is shown in Figure 6 for a reasonably well resolved scheme, where the 
dark region represents the SF6 in a plot of volume fraction. After the initial linear growth phase the 
vorticity deposited by the shock wave can be seen to be gathering at the head of the instability as it starts 
to pull material round the sides. This roll-up continues, establishing clear vortical structures, which then 
start to manifest the secondary instability seen in experiments as a series of small Kelvin-Helmoholtz 
features which disturb the smooth lines of the vortex leading to an eventual breakdown into turbulence. 
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Comparison with experiment will quickly reveal however that the curvature of the mushroom head is 
flawed in this simulation. This is due to how the initial perturbation is resolved on the Cartesian grid, 
indeed it was found there are many factors to consider in setting the initial conditions as these high-order 
schemes are very sensitive to small differences. 
 
While the vortex dynamics dominate the flow and can destabilise the upper surface, there is no evidence 
that the shape of the very tip of the instability has any major impact on the formation of neither the 
vortices nor the breakdown to turbulence. The comparison of methods conducted by Liska and Wendroff 
[12] in which they consider the Rayleigh-Taylor instability, which is closely related to Richtmyer-
Meshkov, shows a host of unphysical and unpredictable features at the head of the instability depending 
on the method used. This is a manifestation of how different methods respond to “errors” in different 
ways. Should the initial conditions be perfectly specified as part of a continuum then one would expect a 
properly rounded tip to the instability but this is one area that demands very careful approximations to be 
simulated accurately. 
 
Figure 7 shows the comparison of different order of accuracy methods over a range of coarse grids with 
20, 40 or 80 cells per wavelength. At the coarsest resolution very little can be seen, though it is well worth 
noting that the overall amplitude of the instability at this time is comparable with the more highly resolved 
simulations. With less than 20 cells this soon ceases to be the case, so this point can be considered to be 
when the primary instability is resolved. It is hard to see much difference between the schemes, however 
the 9th-order WENO method gives an indication that some genuine vorticity is at work at the top of the 
spike causing the shear layer to roll up. At 40 cells across, features are much more clearly visible. The 9th-
order WENO interpolation shows clear vortical roll-up at this stage and the mushroom shape compares 
favourably to the experimental results. The most resolved picture as obtained by the 9th-order WENO 
method has already passed the secondary instability within the vortex coil and has broken down into a 
turbulent mixed area. Also quite clearly seen is some separated fluid drawn down from the vortices, which 
is caused by small Kelvin-Helmholtz instabilities that form on the stem. At this resolution only the effects 
of distortion can be seen. They are not found in the experiment due to the slightly diffuse nature of the 
initial perturbation. By contrast these simulations had a sharp discontinuity (to the level of resolution of 
the grid) and the higher-order schemes do not carry sufficient dissipation to damp out the numerical errors. 
 
As mentioned before, the growth rates seen in all the simulations are very similar. Figure 8 shows the non-
dimensionalised plot of amplitude over time. The symbols represent the experimental measurements taken 
from Jacobs’ paper and the lines show the results of the simulations for all resolutions and schemes. It is 
expected that if the simulations were extended to much later time there would be increasing deviation as 
the non-linearity of the growth becomes dominated by the turbulent mixing - a phenomenon not captured 
at the lower-resolutions. However, it is clear that the schemes can capture the main non-linear growth 
region, which the theoretical models struggle to predict, and having validated the method against these 
experiments a parametric study could relatively swiftly be carried out to improve the theory of this growth 
via the simulations.  
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Figure 7: Volume fraction plots of Richtmyer-Meshkov Simulations with 20, 40 and 80 cells per 
wavelength (columns 1 to 3, respectively) and reconstruction method, Van Leer 2nd-order 

(upper row) and 9th-order WENO (lower row), for sharp initial interface and Atwood No. of 0.692 

 
 

 
Figure 8: Growth of instability, as predicted by different methods (lines), compared to 

experimental measurements (circles relate to equivalent problem, triangles to a weaker shock 
case), non-dimensionalised 
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The 9th-order WENO method is more expensive than the 2nd-order van Leer by a factor 3, but is better 
value for the level of fine-scale detail it provides. More refined grids and further comparison with 
experimental results is required to assess whether such detail is physically correct, however it has been 
noticed that the higher-order schemes are particularly sensitive to very small differences in initial 
conditions and there is a limit to how well the experiment can be modelled to achieve highly comparable 
results with simulations. Indeed, it may not be possible with this problem to identify whether the scheme 
is introducing spurious errors or merely reflecting discrepancies in other parts of the model. Thus far the 
behaviour has appeared physical, and with coarse simulations the WENO methods do well at mimicking 
the results of the second-order schemes on finer grids, but it has not been definitively seen that both 
approaches converge to the same solution for this problem.  
 
One of the critical issues of very high-order methods is that the numerical scheme becomes increasingly 
sensitive to the initial conditions. As has been highlighted within this section, WENO methods allow the 
use of smaller grids. However, when a smaller grid is used, the initial conditions, or indeed any complex 
geometry in the domain (e.g. a wing) are not represented as accurately. 
 
The first important modelling assumption used in the previous examples was that the initial interface was 
sharp, however in experiments it was diffuse. To investigate the effect of the initial condition, the 
transition between the two gases was spread linearly over 5mm, and the grid resolution increased to 400 
cells, using fifth-order MUSCL. The results are shown in Figure 9. The sharp interface suffers from 
spurious Kelvin-Helmholtz vortices along the neck of the instability, which are not present in the 
experiment. This is due to the absolute instability of the sharp discontinuity. The diffuse interface 
significantly reduced the unwanted instabilities - although it did not suppress them entirely for the higher 
resolution runs.  
 

 
Figure 9: Comparison of sharp and diffuse initial interfaces for 5th-order MUSCL scheme on 400 

cell cross-section 
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Figure 10: Comparison of alignment of initial condition for 5th-order MUSCL scheme on 400 cell 

cross-section 

A further important point to note is sensitivity of the final solution (especially in two dimensional 
simulations) to the position of the initial condition with respect to the grid. To measure the above two 
simulations were run, the first is perfectly centred, i.e. the single wave is exactly centred on the grid. The 
second initialisation shifts the wave by 10−6% with respect to the grid centre. Figure 10 compares the two 
initialisations. This illustrates that the ’errors’ are coming from the initial conditions rather than the 
solution method, and care must be taken to ensure that grid effects are not dominating the solution in flows 
which are expected to be symmetric. 
 
Figure 11 shows the fifth-order WENO result for 400 grid cells using this diffuse interface, as well as how 
it compares overlayed on the 80 cell image. The overall amplitude is comparable as expected, as is the 
general bubble shape and position of the vortices. Although the coarser simulation does not evidence the 
secondary instability that leads to breakdown of the vortices, it is up to this point a very good 
approximation of the flow. This compares very well with the experimental images. However as has been 
noted the simulation is highly sensitive to initial conditions and more highly-resolved simulations indicate 
that the initialisation is not perfect and is more a happy coincidence that overly dissipative simulations of 
an unstable initial condition results in a plausible looking flow. The issues investigated in this test case 
however are not expected to affect better posed problems for which the initial condition is well defined 
and allows for a degree of uncertainty. 
 
 

  
Figure 11: Fine grid (400 cell) 5th-order WENO simulation compared to coarse 80 cell simulation 
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4.0 TRANSITION TO TURBULENCE 

4.1 Taylor-Green Vortex 
The Taylor-Green Vortex is a fundamental case that has been used as a prototype for vortex stretching and 
the consequent production of small-scale eddies in the context of transition to turbulence [3]. Here, the 
performance of various numerical schemes for the discretisation in time and space are investigated with 
regard to the dynamics of the evolving vortex field. The configuration involves triply periodic boundary 
conditions enforced on a cubic domain of length 2π using 643 and 1283 computational cells. Furthermore, 
the flow field was initialised with a single mode velocity field and the initial pressure is given by the 
corresponding solution of a Poisson equation [5]. 
 
In order to assess the behaviour of different numerical methods [6], the evolution of the volumetric 
enstrophy in time is shown in Figure 12. First, the effect of various Runge-Kutta time-stepping methods 
has been investigated. Here, all simulations have been performed on a grid comprising 643 points and 
employing a third-order accurate MUSCL scheme. The resulting enstrophy displayed in Figure 12(a) is 
virtually identical for a second-order method (RK2), a second-order TVD method (RK2TVD), a third-
order TVD method (RK3TVD) and an extended stability method (RK3HI) for up to twenty eddy-turnover 
times. This is expected as the CFL condition restricts the maximum time step size to the cell size divided 
by the speed of sound. 
 
 

 
Figure 12: The effect of different discretisation techniques on the evolution of enstrophy. 
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Figure 13: Iso-surfaces of the Q-criteria near the peak in enstrophy at time t = 9. 

While the specifics of the time integration method seem to have a negligible impact on the evolution of the 
vortex field, the same cannot be said for the choice of the spatial discretisation scheme. Evidence for this 
statement is revealed in Figure 12(b) showing the evolution of enstrophy as predicted on two grid sizes 
(643 and 1283) by three different numerical methods: a third-order accurate MUSCL scheme (M3), a fifth-
order accurate MUSCL scheme (M5) and a ninth-order accurate WENO scheme (W9). Although the peak 
in enstrophy appears at roughly the same time for all the methods, the magnitude differs substantially. 
This leads to the conclusion that the dynamics dictating the transition from the large-scale dominated 
initial state to a flow field featuring increasingly smaller vortex filaments is captured more accurately on 
the lower resolution by the  higher-order methods. Note the remarkable similarity between the simulations 
using the third-order MUSCL scheme on 1283 computational cells (M3 128) and the ninth-order WENO 
scheme on 643 computational cells (W9 64). This impression is confirmed by considering the vortex 
structure during the peak in enstrophy as visualised in Figure 13 according to the Q-criteria (only one-
eighth of the total cube shown here). As expected, the flow predicted by the W9 scheme exhibits very 
similar structures compared to the results from the M3 scheme obtained at twice the resolution in each 
spatial direction. This is consistent with the observations noted with respect to the single mode 
instabilities, demonstrating that results gained using prototype flows in Section 3 readily extend to three 
dimensional flows. 
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4.2 Multimode Kelvin-Helmholtz 

 

 

Figure 14: Transition to turbulence in the mixing layer 

Results obtained through the investigation of single-mode behaviour in Kelvin-Helmholtz instability are 
readily applicable to much more complicated transitional flows. Fully developed turbulent flows tend to 
loose memory of the initial condition and the effect of the under-resolved scales of the flow on the large 
scales tends to stabilise. On the other hand transitional and absolutely unstable flows introduce additional 
uncertainties into turbulent flow simulation associated with the initial conditions and the effect of under-
resolved modes onto the solution. Inviscid Kelvin-Helmholtz instability is a classical example of an 
absolutely unstable problem for which the growth rate of the perturbation is proportional to ek, where k is 
the wave number [4]. Since the short waves grow much faster than the long waves, transition is 
determined by the resolution of the numerical scheme and the dispersive properties of the numerical 
scheme, which are responsible for the excitation of the modes which were not in the initial perturbation 
spectrum. 
 
Figure 14 shows the evolution of the mixing layer in a 4x2x1 domain. The ILES computations were 
performed on grids ranging from 257 × 129 × 65 to 513× 257 × 129 points using a characteristic-based 
scheme [7] and second-order MUSCL reconstruction with various limiters - Van Albada, Van Leer and 
SuperBee (see, for example [17]). The mixing layer development starts with the initial linearly unstable 
stage, characterised by the exponential growth, and undergoes transition to turbulent regime characterised 
by the linear growth of the mixing layer thickness. Figures 14(a) and (b) show iso-surfaces of the passive 
scalar at the initial stage of the mixing layer development and fully turbulent stage, respectively.  
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Figure 15: Mixing layer growth 

The behaviour of the fully developed turbulent stage can be characterised by the development of 
momentum thickness. In order to demonstrate the uncertainty associated with the initial condition and 
under-resolved wave-lengths in the initial condition, an initial random divergence-free perturbation, with 
the spectrum specified according to [20] and either short-wave perturbation with wave lengths ranging 
from 4∆x to 8∆x or long-wave perturbations with wave lengths ranging from 4∆x to 32∆x, was 
considered. The standard deviation of 0.08∆x was used in both cases.  
 
In the first case the perturbation is given in the wave-lengths, which are not resolved by the second-order 
scheme according to single-mode tests detailed in Section 3. The unresolved perturbation then dissipates 
while at the same time exciting long waves, which are resolved by the scheme. This process defines the 
transition point - once the long-waves which are resolved by the scheme become excited, the growth of the 
mixing layer starts and transition to turbulence occurs. Different second-order schemes with similar 
dissipation lead to different prediction of transition to turbulence. Figure 15(a) shows momentum 
thickness obtained with different limiters. In the fully turbulent stage similar growth rates are obtained, 
however the van Albada limiter leads to a faster transition. Figure 15(b) shows momentum thickness 
obtained with the same limiter and different initial perturbation. Exciting resolved wave-lengths results in 
faster transition to turbulence.  
 
In self-similar mode, the momentum thickness grows linearly with time. Experimental studies of mixing 
layers yield growth rates of ≈0.016 (see, for example, [2]). DNS of temporal mixing layer by [14] yields 
the growth rate of 0.014. Current ILES computations yield growth rates of 0.011 to 0.013 for coarse and 
fine grid respectively. The results indicate that for the transitional flows, the initial conditions represent an 
important source of computational uncertainty and the application of schemes with same nominal order of 
accuracy can result in different predictions where transition to turbulence is concerned. Similar strong 
effects of a small change in initial conditions on the developing stage of the mixing layer have been 
observed experimentally [13]. 

5.0 CONCLUSIONS 

Implicit Large Eddy Simulations of a swept wing configuration demonstrate very good agreement with 
experimental measurements at all stations. As is typical with such under-resolved flows, the agreement of 
Reynolds stresses with experiment is worse where transition occurs at the leading edge. 
 
Simulations of single mode instabilities highlight key factors in quantifying the resolution of a numerical 
method. It is shown that typical second- and third-order Godunov-type methods require between 16-32 
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cells to resolve a single vortex. At the leading edge of the swept wing, there are only about 8 cells in the 
entire transition region. Next, it is demonstrated that below Mach=0.2 the dissipation of the numerical 
scheme severely damps the growth of instabilities, and the numerical method must be modified to gain 
accurate results. It is also shown that the resolving power of the ninth-order WENO is equivalent to the 
third-order methods with twice the points in each direction. It is clearly computationally more efficient. 
 
The results carry over to fully three-dimensional simulations of flows in turbulent transition. The Taylor-
Green vortex case demonstrates that the time stepping method is not a critical factor influencing the result 
of the numerical simulation. As demonstrated with the Richtmyer-Meshkov instability, the ninth-order 
WENO is significantly more accurate than the third-order methods, and importantly show the same flow 
structures at the same time on grids one eighth the size. 
 
Finally, the multi-mode Kelvin-Helmholtz study shows that scheme resolution and dispersive properties 
are of particular importance when the transition to turbulence is considered. The transition is governed by 
the development of the initial perturbation and when this includes under-resolved modes, the initial growth 
rates are highly dependent on numerical method. In this case even two closely related methods (such as 
van Albada and van Leer, for example) can produce significantly different growth in the early stages of 
the instability, leading to different predictions of turbulent transition. 
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